Part Number Hot Search : 
TM128 P89LPC 1209S 20240 CD4050B SC7312 MC68HC0 MPR7040
Product Description
Full Text Search
 

To Download IRFR7440TRPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  fig 1. typical on-resistance vs. gate voltage fig 2. maximum drain current vs. case temperature hexfet   power mosfet benefits improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  lead-free  rohs compliant containing no lead, no bromide, and no halogen gds gate drain source applications  brushed motor drive applications  bldc motor drive applications  pwm inverterized topologies  battery powered circuits  half-bridge and full-bridge topologies  electronic ballast applications  synchronous rectifier applications  resonant mode power supplies  or-ing and redundant power switches  dc/dc and ac/dc converters d-pak irfr7440pbf    25 50 75 100 125 150 175 t c , case temperature (c) 0 20 40 60 80 100 120 140 160 180 i d , d r a i n c u r r e n t ( a ) limited by package 4 8 12 16 20 v gs , gate-to-source voltage (v) 0 2 4 6 8 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) t j = 25c t j = 125c i d = 90a d s g v dss 40v r ds(on) typ. 1.9m max. 2.4m i d (silicon limited) 180a i d (package limited) 90a i-pak irfu7440pbf s d g d form quantity tube/bulk 75 irfr7440pbf tape and reel 2000 IRFR7440TRPBF irfu7440pbf i-pak tube/bulk 75 irfu7440pbf base part number package type standard pack orderable part number irfr7440pbf d-pak   
       
  
            
  downloaded from: http:///
 
       
  
            
    calculated continuous current based on maximum allowable junctiontemperature. bond wire current limit is 90a. note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. 

  repetitive rating; pulse width limited by max. junction temperature.  limited by t jmax , starting t j = 25c, l = 0.04mh r g = 50 , i as = 90a, v gs =10v.  i sd 100a, di/dt 1306a/ s, v dd v (br)dss , t j 175c.  pulse width 400 s; duty cycle 2%.  c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss . when mounted on 1" square pcb (fr-4 or g-10 material). for recommended footprint and soldering techniques refer to application note #an-994.
  
 

 
  
 !" limited by t jmax starting t j = 25c, l= 1mh, r g = 50 , i as = 27a, v gs =10v. absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 25c continuous drain current, v gs @ 10v (wire bond limited) i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v dv/dt peak diode recovery  v/ns t j operating junction and t st g storage temperature range soldering temperature, for 10 seconds (1.6mm from case) avalanche characteristics e as (thermally limited) single pulse avalanche energy  mj e as (thermally limited) single pulse avalanche energy  i ar avalanche current a e ar repetitive avalanche energy mj thermal resistance symbol parameter typ. max. units r jc junction-to-case  CCC 1.05 r ja CCC 50 r ja junction-to-ambient  CCC 110 see fig 15,16, 23a, 23b junction-to-ambient (pcb mount)  a c 300 140 4.4 160 c/w max. 180  125  760 90 376 -55 to + 175 20 0.95 static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 40 CCC CCC v v (br)dss / t j breakdown voltage temp. coefficient CCC 28 CCC mv/c r ds(on) static drain-to-source on-resistance CCC 1.9 2.4 m 2.8 CCC m v gs(th) gate threshold voltage 2.2 3.0 3.9 v i dss drain-to-source leakage current CCC CCC 1 a CCC CCC 150 i gss gate-to-source forward leakage CCC CCC 100 na gate-to-source reverse leakage CCC CCC -100 r g internal gate resistance CCC 2.6 CCC v gs = 20v v gs = -20v v gs = 6.0v, i d = 50a v ds = v gs , i d = 100 a conditions v gs = 0v, i d = 250 a  reference to 25c, i d = 1ma v gs = 10v, i d = 90a v ds = 40v, v gs = 0v v ds = 40v, v gs = 0v, t j = 125c downloaded from: http:///
    
  
            
   
   s d g dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 280 CCC CCC s q g total gate charge CCC 89 134 nc q gs gate-to-source charge CCC 26 CCC q gd gate-to-drain ("miller") charge CCC 26 CCC q sync total gate charge sync. (q g - q gd ) CCC 63 CCC t d(on) turn-on delay time CCC 11 CCC ns t r rise time CCC39CCC t d(off) turn-off delay time CCC 51 CCC t f fall time CCC 34 CCC c iss input capacitance CCC 4610 CCC pf c oss output capacitance CCC 690 CCC c rss reverse transfer capacitance CCC 460 CCC c oss eff. (er) effective output capacitance (energy related) CCC 855 CCC c oss eff. (tr) effective output capacitance (time related) CCC 1210 CCC diode characteristics symbol parameter min. typ. max. units i s continuous source current CCC CCC 180 a (body diode) i sm pulsed source current CCC CCC 760 a (body diode)  v sd diode forward voltage CCC 0.9 1.3 v t rr reverse recovery time CCC 34 CCC ns t j = 25c v r = 34v, CCC35CCC t j = 125c i f = 90a q rr reverse recovery charge CCC 33 CCC nc t j = 25c di/dt = 100a/ s  CCC34CCC t j = 125c i rrm reverse recovery current CCC 1.8 CCC a t j = 25c v dd = 20v i d = 90a, v ds =0v, v gs = 10v i d = 30a r g = 2.7 conditions v gs = 10v  v gs = 0v conditions v ds = 10v, i d = 90a i d =90a v ds =20v v gs = 10v  v ds = 25v ? = 1.0 mhz, see fig. 5 v gs = 0v, v ds = 0v to 32v  see fig. 12 v gs = 0v, v ds = 0v to 32v  t j = 25c, i s = 90a, v gs = 0v integral reverse p-n junction diode. mosfet symbol showing the downloaded from: http:///
 
       
  
            
  fig 3. typical output characteristics fig 5. typical transfer characteristics fig 6. normalized on-resistance vs. temperature fig 4. typical output characteristics fig 8. typical gate charge vs. gate-to-source voltage fig 7. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60 s pulse width tj = 25c 4.3v vgs top 15v 10v 7.0v 6.0v 5.5v 5.0v 4.5v bottom 4.3v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60 s pulse width tj = 175c 4.3v vgs top 15v 10v 7.0v 6.0v 5.5v 5.0v 4.5v bottom 4.3v -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 90a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 20 40 60 80 100 120 q g total gate charge (nc) 0 4 8 12 16 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 32v v ds = 20v i d = 90a 2.0 3.0 4.0 5.0 6.0 7.0 8.0 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) v ds = 10v 60 s pulse width t j = 25c t j = 175c downloaded from: http:///
    
  
            
   
   fig 10. maximum safe operating area fig 11. drain-to-source breakdown voltage fig 9. typical source-drain diode forward voltage fig 12. typical c oss stored energy fig 13. typical on-resistance vs. drain current 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 40 41 42 43 44 45 46 47 48 49 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 1.0ma 0 10 20 30 40 v ds, drain-to-source voltage (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 e n e r g y ( j ) 0 20 40 60 80 100 120 140 160 180 200 i d , drain current (a) 0.0 2.0 4.0 6.0 8.0 10.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) v gs = 5.5v v gs = 6.0v v gs = 7.0v vgs = 8.0v v gs =10v 0.1 1 10 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec 100 sec dc l imited by package operation in this area limited by r ds (on) downloaded from: http:///
 
    !   
  
            
  fig 14. maximum effective transient thermal impedance, junction-to-case fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16:(for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far inexcess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 23a, 23b.4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16).t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 14) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 20 40 60 80 100 120 140 160 180 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 90a downloaded from: http:///
 "   
  
            
   
    #$%& 
'%('  ) fig 17. threshold voltage vs. temperature 
#$%& 
(*'  )  #$%& 
'%('  )   #$%& 
(*'  ) 0 200 400 600 800 1000 di f /dt (a/ s) 0 20 40 60 80 100 q r r ( n c ) i f = 90a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 20 40 60 80 100 120 q r r ( n c ) i f = 54a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 2 4 6 8 i r r m ( a ) i f = 90a v r = 34v t j = 25c t j = 125c -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 100 a i d = 250 a i d = 1.0ma i d = 1.0a 0 200 400 600 800 1000 di f /dt (a/ s) 0 2 4 6 8 i r r m ( a ) i f = 54a v r = 34v t j = 25c t j = 125c downloaded from: http:///
 
    +   
  
            
  fig 24a. switching time test circuit fig 24b. switching time waveforms fig 23b. unclamped inductive waveforms fig 23a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 25a. gate charge test circuit fig 25b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 22. ,

'%')$(  for n-channel hexfet   power mosfets  
     ? 
     ?     ?

         p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period -
# 
$
%#

& '(
&)
)( - + - + + + - - -      #  ?      !  ?   " #$## ?        %  && ? #$##'$

   d.u.t. v ds i d i g 3ma v gs .3 f 50k .2 f 12v current regulator same type as d.u.t. current sampling resistors + - v ds 90%10% v gs t d(on) t r t d(off) t f #  ( ) 1 *  %   0.1 %   #    "*"" # + - #  #  downloaded from: http:///
 .   
  
            
   
   
  
 
   
          
     irfr7440 pyww? irfr7440 ywwp assembly lot code international rectifier logo date code p = lead-free y = last digit of year ww = work week ? = assembly site code part number or date code y = last digit of year ww = work week p = lead-free lc lc assembly lot code international rectifier logo part number lc lc downloaded from: http:///
 
       
  
            
  
  
  
    
          
     irfu7440 pyww? irfu7440 ywwp assembly lot code international rectifier logo date code p = lead-free y = last digit of year ww = work week ? = assembly site code part number or date code y = last digit of year ww = work week p = lead-free lc lc assembly lot code international rectifier logo part number lc lc downloaded from: http:///
    
  
            
   
   
     tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl notes : 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters ( inches ). 3. outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch  
          
     downloaded from: http:///
 
       
  
            
  / 0 
 

 12 &2))
)&
 #
)%) //3*4 
* %'
' 4 ,
 %
   
 &'
 
 
2&2
)

# )&) ///5&& '

677( 
&
  d-pak msl1 i-pak (per jedec j-std-020d ??? ) rohs c ompliant (per jedec jesd47f ??? guidelines) yes qualification information ? industrial ?? qualification level moisture sensitivity level ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa to contact international rectifier, please visit http://www.irf.com/whoto-call/ date comments 10/17/2012 ? added i-pak -all pages ? updated data sheet based on corporate template. ? added "stong fet" on header on page7. ? updated package outline and part marking on page 9 & 10. ? updated e as (l =1mh) = 376mj on page 2 ? updated note 10 limited by t jmax , starting t j = 25c, l = 1mh, r g = 50 , i as = 27a, v gs =10v. on page 2 revision history 5/1/2014 1/6/2015 downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRFR7440TRPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X